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ABSTRACT

In order to achieve the worldwide set ambitious climate goals, the
identification and characterization of flexibility in city districts can
reduce grid loads and avoid grid congestion. Unlike other flexibility
indicators in the literature, the present paper introduces a new
flexibility indicator that uses a data-driven approach to determine
flexibility from actual measured load profiles. We present this new
indicator by considering flexibility in the context of planning charg-
ing infrastructure with a valley filling approach. For this use case,
we introduce a data-analysis workflow to apply the presented flexi-
bility indicator. The described data-analysis workflow is applied to
data from a real-world city district.

Based on the results from the real-world data, we show that the
highest peak load and the least flexible peak are not always identi-
cal. Therefore, it is not sufficient to consider only the highest peak
loads to adequately describe flexibility. Furthermore, we discuss
that additional flexibility can be used as another degree of freedom
to optimize the charging power or the charging duration. In the
presented real-world data, we show that the maximum required
charging power is determined by the most inflexible peak and can
be the same or smaller for all peaks with a higher flexibility. More-
over, we highlight the difference between considering buildings
individually and combining them as a district.

CCS CONCEPTS

» Hardware — Smart grid; - Mathematics of computing —
Time series analysis; « Information systems — Data analytics.

KEYWORDS

flexibility, city district, charging infrastructure planning, valley
filling, real-world data

ACM Reference Format:

Johannes Galenzowski, Simon Waczowicz, and Veit Hagenmeyer. 2023. A
new Data-Driven Approach for Comparative Assessment of Baseline Load
Profiles Supporting the Planning of Future Charging Infrastructure. In The
14th ACM International Conference on Future Energy Systems (e-Energy 23
Companion), June 20-23, 2023, Orlando, FL, USA. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3599733.3600245

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

e-Energy ’23 Companion, June 20-23, 2023, Orlando, FL, USA

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0227-3/23/06.

https://doi.org/10.1145/3599733.3600245

Simon Waczowicz
simon.waczowicz@Kkit.edu
Karlsruhe Institute of Technology
Karlsruhe, Germany

Veit Hagenmeyer
veit.hagenmeyer@kit.edu
Karlsruhe Institute of Technology
Karlsruhe, Germany

1 INTRODUCTION

Governments around the world set ambitious goals on carbon re-
duction to combat climate change. For example, the German federal
government aims at reducing carbon emissions by 55 % until the
year 2030 compared to 1990 [25]. Worldwide, the residential sector
contributes 20 %, the service sector 14 % and the transport sector
35 % to the primary energy consumption [6]. Since those sectors
all come together in city districts, city districts play a significant
role in the transformation of the energy sector.

In view of advancing energy transition, the exploitation of flexi-
bility potential in city districts becomes crucial, in order to reduce
grid loads and avoid grid congestions [35]. To identify and quan-
tify the flexibility potential, suitable methodology and flexibility
indicators are needed. A variety of papers like [13, 18, 21, 22, 24]
and [4, 5, 16] address the description and quantification of flexibil-
ity. Furthermore, recently published meta analyses like [20], [19]
or [10] give a holistic overview of all kinds of different methods
and indicators describing flexibility. Those indicators, for example,
consider the spread of key figures, e.g. emissions or costs, between
low and high load periods (see flexibility factor in [10]), the self-
sufficiency and self-consumption indicator [10] or the capacity of
controllable loads, in order to reduce energy consumption in case
of a demand response measure [10].

As those papers present a high number of different indicators, it
can be concluded that no single indicator fits all applications and
research questions. Papers like [3] show that flexibility is always
in some form linked to physical devices, that can either reduce or
shift their demand in time. As governments accelerate the transi-
tion towards a sustainable transport system, electric vehicles (EVs)
and charging infrastructure (CI) become increasingly significant
devices for flexibility provision. For example, according to the "Kli-
maschutzprogramm 2030’ [25] of the German federal state, one
million charging points shall be installed until the year 2030 from
which, less than 7 % was reached in September 2022 [7].

With those high numbers of CI still in the planning phase, there
is an urgent need for flexibility indicators, that do not only de-
scribe the operation but also help in the planning phase of new
CI. However, most flexibility indicators are centered around the
building heating, ventilation, and air conditioning (HVAC) sphere
and are not applicable on CI. Further, these flexibility indicators
are not primarily based on measurement data and require detailed
modelling [10].

Paper that cover planning of CI like [13, 22, 28, 31] all approach
the planning from the perspective of expected charging behavior,
considering different vehicle types and usage characteristics and
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concluding the required size of CI to fulfill this demand. This as-
sumes that the on-site conditions in a city are ideally adaptable to
the identified charging demand. In reality, however, CI is part of
the superordinate, already existing city infrastructure (like parking
spaces or the distribution grid with other existing energy con-
sumers). Therefore, a suitable flexibility indicator needs to take
the characteristics of the existing superordinate infrastructure into
account.

The relevant aspects of the superordinate infrastructure are to
some degree of physical and to some of legal nature. From the
hierarchical perspective, a city consists of different districts, that
themselves consist of different buildings (see Figure 1). From a
legal standpoint, the connection point between the building and
the superordinate grid, i.e. the grid connection point (GCP) is of
interest (e.g. ’Kundenanlage’ in the German law [8]). The GCP can
be associated with a single building or aggregate multiple buildings
in other cases (see Figure 1). In the private grid, subordinate to the
GCP, energy can be exchanged without the supplier being regulated
as a utility company, leading to reduced costs and bureaucracy [8].
Also, the energy billing is carried out on the load profile of each
GCP individually [9]. While papers like [27], [23] or [36] describe
the demand for flexibility in the energy market and how to quantify
flexibility of existing flexible plants, we focus on characterizing
the potential for future supply through future CI. Our approach
makes different GCPs comparable. This information can then be
used to be matched against the flexibility needs of the market and
the superordinate grids to make a planning decision.
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"% Distrct 1 Districti%t
public
rrrrrrrrrrrrrrrrrr GCP 1 e GEP A oo GCP L - GCP 2 e

private i |

1 ! 1 :
Building 1 Building2 Buildingn  Building 1 Building n
\

P S i N

1 '
Building 1 Building 2

® A

Figure 1: Hierarchy of superordinate infrastructure: Multiple
buildings at one GCP (left) or one building only per GCP and
coupling of buildings only through public grid (right)

Therefore, suppliers of local renewable energy and operators of
the private grid in one GCPs only optimize the internal consump-
tion inside their single GCP and do not consider the other GCPs
in the district. Therefore, a suitable flexibility indicator needs to
make the different GCPs comparable. Furthermore, research like
[21] or [26] suggest, that aggregation of buildings to a district leads
to advantages in flexibility and grid support. Since the aggregation
at district level faces multiple legal problems in the current system
(e.g., for Germany see [12]), the advantages of combining multiple
GCPs to a district also need to be critically examined.

Besides grid congestion, cost reduction is a main motive for ex-
ploiting flexibility [10]. In countries like Germany, billing periods
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can not only be on a yearly, but also on a monthly basis, according
to StromNEV § 19 [9]. The charged prices are composed of an en-
ergy related share (¢/kWh) and a power related share (€/kW). A
monthly billing period, in this case, means, that the power compo-
nent is charged for each month individually on its highest monthly
consumption peak. Therefore, a suitable flexibility indicator should
also be able to characterize flexibility regarding monthly power
peaks.

To avoid new and even higher peaks, charging needs to take place
during off-peak times. In the context of load shaping approaches as
defined in [10], this means a valley filling approach. Valley filling
is widely examined in literature [1, 2, 11, 15, 17, 30, 32-34]. Those
works all present different algorithm and control strategies, like
decentralized coordination [32, 33], control through price signals
[1, 15, 17, 33] or further grid friendly behavior, like reduced power
ramps [30, 33] or the consideration of the limits of the local power
transformer or a local grid [11, 15].

However, [1, 2, 11, 14, 15, 17, 30, 32-34] all target at optimizing
the operation of CI during everyday production usage. Therefore,
they do not focus on providing indicators that quantify the flexibility
in a way to make GCPs comparable to support the planning phase
of new CL

Since, as [10] points out, valley filling aims at increasing the
consumption in off-peak hours and those are characterized by a
baseline load profile! the assumed baseline load profile is of high
relevance. The baseline load profile in [33] is based on data of a
Californian system operator, [34] uses measured data from a trans-
former in Shenzhen and [11] utilizes the load profile of the IEEE
14-bus system. However, only single load profiles with a limited
time range are used by [11, 33, 34] and a comparison of multi-
ple load profiles over a whole year is missing. In other paper like
[1, 2, 15, 32] it is not even clear, what the baseline load profile is
based on. A study and comparison of several measured real-world
baseline load profiles and their difference or suitability for valley
filling is missing. To conclude, a data-driven approach for quanti-
fying CI flexibility of measured baseline load profiles of existing
buildings or districts regarding the suitability for valley filling is
needed.

When considering a data-driven approach, it should be based on
features used for flexibility description, like proposed in [18]. One
main feature is the time for which a flexibility source is available
[18]. For example, a charging session of an EV lasts from 20 min to
6 h depending on the location type [13]. The limitation on available
charging power is highest around peaks of the baseline load profile.
Therefore, the flexibility indicator must be able to reflect the limited
availability in the surroundings of a load peak.

To sum up, a suitable flexibility indicator needs to consider char-
acteristics of charging infrastructure like limited availability of
vehicles and limited charging power. Furthermore, it must support
the planning phase of new CI. In addition, the flexibility indicator
should make different GCPs comparable. And lastly, it needs to
consider monthly and yearly consumption peaks and be extractable
from existing baseline load profiles without further assumptions
needed for vehicle or user behavior. Instead, it should only quantify

!Baseline meaning the measured load profile under current consumption and behav-
ioral conditions without the newly planned CI.
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the suitability of a GCP for the future installation of grid friendly CI
(that does not produce additional peaks besides the existing ones)
through a data-analysis of baseline load profiles.

The remainder of the paper is organized as follows: Section 2
presents our methodology to calculate the flexibility indicator. In
section 3, we present a real-world district that contains four differ-
ent GCPs. In section 4, we discuss the application of our methodol-
ogy on the real-world data. Additionally, subsection 4.2 presents the
comparison of the different GCPs, subsection 4.3 examines the cor-
relation of flexibility and peak height, and subsection 4.4 discusses
flexibility on a district level compared to each GCP individually.
Section 5 closes the present article, giving relevant conclusions and
an outlook for future work.

2 METHODOLOGY

In section 2 we present the data-driven approach, fulfilling the
requirements laid out in section 1. The full workflow of the data-
analysis process is depicted in Figure 2. Since the approach is based
on analyzing a baseline load profile regarding power peaks, a first
step is to acquire and prepare the baseline load profiles of each
GCP (subsection 2.1) and to identify the different types of peaks
(subsection 2.2). In the next step, the flexibility indicator is defined
and calculated for each GCP (subsection 2.3). Afterward, a filtering
step is included to select only the relevant peaks of each GCP for
further analysis and comparison (subsection 2.4). Furthermore, the
power limitation aspect of CI is considered in subsection 2.5. The
obtained results are then used to compare the different GCPs in
order to answer the further research questions posed in section 1.

Preprocessing of input data (subsection 2.1)

Identification of peaks (subsection 2.2)

Calculation of flexibility indicator (subsection 2.3)

Filtering for relevant peaks (subsection 2.4)

Calculation of charging power (subsection 2.5)

—C _JL _JL_JL _J

i for all GCPs
Final: Comparison of the different GCPs (section 4)

Figure 2: Overview of data-analysis workflow for all GCPs
individually with a final comparison of the different GCPs

2.1 Preprocessing of input data

When considering preprocessing, features of interest are: time zone,
temporal resolution, value resolution and time frame of available
data. The resolution is relevant for both the temporal and the value
axis, since measured values are usually both time discrete and
value discrete. The temporal resolution (At) is assumed as 15 min
equidistant. The value resolution (Ap) depends on the quality of
the power measurement and can greatly influence the results. For
example, at Ap, it might appear that multiple 15 min power values
have the same magnitude, resulting in multiple peaks that appear
to be equally important but exhibit potentially quite different load
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profile shapes before and after the peak. Because billing of peaks
is carried out on a time frame of a month or a year, the available
data needs to cover at least one year per GCP. Further research is
needed to investigate, whether the relevant key figures could also
be extrapolated on a data basis of a smaller time frame.

2.2 Identification of peaks

Firstly, all potentially relevant peak data points need to be identified.
These are power maxima at the level:

® pgy: global year (calendar feature)
® pgm: global month (calendar feature)
e p;:local (in given number of neighboring data points)

The set of local maxima includes the monthly maxima which include
the yearly maxima:

Pgy C pgm C p1 (1)
The yearly maxima (pgy) and monthly maxima (pg,) are defined
as the highest 15min power value in a given yearly or monthly
time frame. If the power value resolution is low in relation to the
absolute power level, more than one data point may have the same
global power level in the given time frame. In this case, both data
points are classified as yearly/monthly peaks.

The local maxima are identified by finding the highest (or equal)
power value in a given surrounding of each data point (order) for
the entire load profile. With a 15 min temporal resolution, a single
day has 96 data points that result in an order of 48. This makes
it possible to identify approximately one local maximum per day
without being limited through calendar features (e.g., a maximum
right around midnight, that would be counted twice if identified by
the day as a calendar feature).

2.3 Calculation of flexibility indicator

As discussed in section 1, the flexibility is characterized by the
baseline load profile during a certain time frame ¢ around any
peaks specified in subsection 2.2. The main function of the time
frame ¢ is to have a comparable metric for each load profile. The
size of the time frame influences the expressiveness of the flexibility
indicator. Regarding CI, the longest expected charging duration is
6h (see section 1). Therefore, it can be assumed that ¢ of 6 h is the
best suite as a starting point for this paper. A t7 of 6 h leads to an
evaluated range from —3 h to 3 h around each peak time (¢;). With
a At = 15 min resolution, that leads to 12 values before and after #;,
resulting in: tp = {t; + k - Atlk € [-12,12] N Z}.

The flexibility indicator is calculated for every local peak. In a
first step, the flexible energy around each peak (e}, £,y ) is calculated

as:
+12

D (pg—p) At

i=t;—12

€l flex = ()
Figure 3 shows the baseline load profile (gray) and for the relevant
time frame ¢y in the surrounding of ¢; also e; ¢}y in red.

The global peak power p, can either be the yearly maximum py,
or the monthly maximum, pgm, depending on the billing system
for the individual GCP. To compare also the suitability of the two
different billing methods for the different GCPs, both, the monthly
and the yearly billing system are evaluated in this paper. The value
of ej fley is calculated for every local power maximum (p;) and
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Figure 3: Examples for one peak with low flexibility (left)
and one peak with high flexibility (right)

therefore, for each timestamp, ¢; of a local power maximum. We
define the inflexible energy e f;, by:

t+12

€Lfix = Z pi-
i=t;—12

At 3)

The flexibility indicator f is then defined as the share of flexible
energy ey riex of the overall energy (ey, fiex + €, fix) in a given time
frame f¢. It ranges from 0.96 as an ideal peak with the highest

flexibility to zero as the worst peak with the lowest flexibility?:

€l flex

— I < 10,0.96]
(e flex + €1, fix)

f= ©)
As mentioned, both billing methods (pgy and pgrm) are evaluated,
leading to fy (yearly billing period) and fy, (monthly billing period).

2.4 Filtering for relevant peaks

The peak with the lowest flexibility fi, limits and characterizes
the whole GCP. In addition, the second and third most inflexible
peaks characterize the GCP. However, below a certain threshold, the
peaks are too low to be representative of the characteristics of the
GCP. This threshold is defined using normalizes local peaks p,, ; =
P1/pgy (yearly) and p,, ; = p;/pgm (monthly) and the characteristic
flexibility fmin (min(fy) or min(fy,;) correspondingly) as:

®)

This assumption filters out all peaks, allowing for permanent charg-
ing with average charging power without the need for load shifting.
fmin also depends on the billing period as described in subsec-
tion 2.3. The rating is therefore also carried out on a yearly and a
monthly basis.

if (py1 + fmin > 1) then — relevant

2For the ty used in this paper, the best case are 24 At with 100 % ej fjex and the peak
At with 100 % ey, fix leading to f = 24/25 = 0.96.
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2.5 Calculation of charging power

Subsection 2.4 discusses the filtering for relevant peaks. The peaks
that required some sort of load shifting were identified as the rele-
vant peaks. However, as the other relevant peaks all show a higher
flexibility than fi;n, they exhibit a certain surplus of flexibility and
therefore a further degree of freedom. Figure 4 shows two different
ways to use the surplus flexibility: for charging power optimization
or for charging time optimization. Due to costs, it is of interest
to minimize the charging power needed to exploit the maximum
flexibility. Consequently, the minimum required charging power is
calculated as a further indicator to characterize the GCP.

Power optimization Duration optimization

100% Peak Power

Figure 4: Example for utilization of flexibility with charging
limit: Utilization of flexibility for power optimization (left)
and for charging duration optimization (right)

The following paragraph describes the algorithm to calculate the
minimal required charging power (see Algorithm 1). The reference
is the energy that can be charged at the most inflexible peak (ein =
€1, flex (fmin)). At least this amount should be chargeable at all
other peaks as well. Therefore, during the calculation, the charging
power p.p, is gradually increased, until the integral over all time
steps (¢ € t¢) matches the energy chargeable at the most inflexible
peak. For timestamps, where a charging power limitation is needed
(t € t};,), the maximum power reserve until the peak power is used
for charging. We use the normalized (on the year peak) baseline load
profile p,, [t]. The charging power during t;;,, is then given as (1 —
pnlt]). For the remaining timestamps (¢ € t,,,1;m), charging with
the maximum charging power p.p,, is assumed. The algorithm tries
to find a data point with the next higher charging power pcpg rmp
until the required energy e, is met. Since At and ty are fixed
values for all peaks, and Ae = p - At, the term At can be set to one
and the energy can be determined by e = )} Ae = ) p as a sum of
the powers of the individual time intervals. The charged energy e.p,
consists of a part during limited e;;,,, and a part during unlimited
eunlim charging. The charging power during the unlimited time per
definition needs to be higher or the same as the power during the
limited times. Therefore, if the energy requirement is fulfilled, the
maximum charging power can be calculated as the energy charged
during unlimited charging (e,pniim = €min — €1im) divided by the
number of time steps of unlimited charging (len(t,,1im))-
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Algorithm 1 Identifying maximum required charging power

emin < len(tg) - min(fy)
while e ., < emin do
Punlim < Pn Where p < (1= pcpg)
Pehatmp < (1 - max(Punlim))
for t € ty do
if t € t}j;, then
€lim < €lim + (1= Pnlt])
else if t € tyy)im then
€unlim < €unlim + (1 _Pcha,tmp)
end if
end for
€cha,tmp < €lim t Cunlim
if €cha,tmp < emin then
Pcha < pcha,tmp
€cha < €cha,tmp
else if e.pg tmp >= emin then
Pcha = (€min = €1im) /len(tunlim)
break
end if
end while

3 REAL-WORLD DISTRICT AND DATA BASE

In section 3, we present the real-world district in the city of Karl-
sruhe, Germany, and present the data base.

3.1 Real-world district

The district is of a mixed residential-commercial type. Regarding
charging profiles, charging at work is present as well as the charging
of car-sharing vehicles and charging by residents. Since it is an
urban district, the potential for further renewable energy generation
is limited. The district consists of four GCPs with a multitude of
buildings subordinate to each GCP (see Figure 5; compare Figure 1).
The GCPs are coupled through the public 20kV grid. Regarding
the construction year, the district is quite heterogeneous. It reaches
from buildings constructed less than 5 years ago to ones constructed
more than 120 years ago.

Figure 5: Buildings of the four GCPs in the real-world district
in Karlsruhe, Germany [29]
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As mentioned in section 1, the GCP is a relevant billing boundary.
Energy supplier within the GCPs are not regulated as utility com-
panies. Furthermore, within the GCPs in this specific district, local
generation and consumption is further subsidized®. The advantages
of reduced regulation and subsidies are omitted, when utilizing
the public grid for energy exchange. Therefore, the advantages of
considering the whole district versus the single GCPs need to be
critically examined in subsection 4.4.

3.2 Data base

The real-world load profiles used in the present paper were mea-
sured by the utility company for billing purposes. The temporal
resolution (compare subsection 2.1) of the load profiles is equidis-
tant 15 min and the data is available for the whole year of 2021. All
load profiles were converted in UTC with the start timestamps of
each period and the power consumption for each GCP. For plots of
the load profiles, see Appendix A.

As mentioned in subsection 2.1 the value resolution Ap signif-
icantly influences the number of identified local peaks p;. The p;
values were obtained following the method described in subsec-
tion 2.2 with an order of 48. The Ap of the real-world load profiles
ranges from 0.001 % to 2.128 % given in percent of the peak power
Pgy as shown in Table 1. GCPs with a lower value resolution (higher
Ap) present a significantly higher number of p; (compared Table 1).
For example, for GCP 2, 1372 p; were identified instead of the ex-
pected average of 365 per year (resp. 366 in 2021 due to leap year).
The number of additionally identified p; can be characterized by the
occurrence of adjacent maxima or several maxima in one calendar
day. Of GCP 2’s total of 1372 py, 670 have directly adjacent p; with
the same value. In 1013 cases of the 1372 p;, more than one p; per
calendar day was identified due to an indistinguishable peak level.
However, since they do represent real world power maxima and it
is not possible to extract a more precise peak value, all data points
at the peak level were treated as equally relevant in this work. In
future work, other methods like filtering according to flexibility
indicator or peak slope could be examined.

Table 1: Lower value resolution Ap leads to a lower number of
distinguishable peak power levels and multiple values, either
directly neighboring or within the same day exhibiting an
identical peak level and therefore leads to more peak values
(number of identified p;) than the ideal 365-366 per year

GCP1 GCP2 GCP3 GCP4
(Ap/pgy) 0.001% 2.128% 0.049% 0.901%
number of identified lo- 375 1372 430 501
cal peaks p;
number of peaks with 22 670 74 110
immediate neighbor at
same power level
number of additional 22 1013 117 153

peaks per calendar day

¥Mieterstromzuschlag” according to EEG 2021 §21 3.2 and reduced grid fees according
to StromNEV §18 1.1.
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4 RESULTS AND DISCUSSION

In section 4, we discuss the results obtained from applying the
methodology presented in section 2 to the data base presented in
section 3.

4.1 Application of data-analysis workflow

Since the data-analysis workflow has already been described in
detail in section 2, only the specifics of the results are discussed
in the following. Besides the quality of the data base, which was
described in subsection 3.2, the results of the filtering process and
the determined flexibility indicators are the main factors to be
examined.

Peaks are in their nature outliers and extreme values. In average,
only 1.93 % of all peaks of the real-world validation dataset are
relevant for flexibility characterization on a yearly basis. Signifi-
cantly more data points, 29 % of all peaks, characterize the monthly
flexibility (compare Table 2). Future work also needs to examine
the sensitivity of the percentage of relevant peaks toward ¢ (that
was chosen as a 6 h time frame in this work, see subsection 2.3).
The other results of the analysis workflow are presented in the

Table 2: In contrast to p;, the absolute number of relevant
peaks on a yearly basis (f;) or a monthly basis () is not
significantly influenced by Ap for the data basis used in this
work. The additional peaks are irrelevant for the characteri-
zation of the GCP (see subsection 2.4)

GCP1 GCP2 GCP3 GCP4

number of identified p; 375 1372 430 501
relevant on yearly basis 2 15 9 20

relevant on monthly basis 112 128 221 129
irrelevant 263 1244 209 372

following directly in the form of a comparison of the four GCPs.

4.2 Comparing the data-analysis results for the
four GCPs

The monthly and yearly flexibility show the same characteristics of
the GCPs for the given dataset. Meaning, the higher the flexibility
on a yearly basis, the higher it is also on a monthly basis (see Table 3
and Figure 6).

Table 3: Characteristic flexibility f,;, and corresponding
normalized power p,

GCP1 GCP2 GCP3 GCP4
Fmin,y 0.14 0.07 0.14 0.13
Py at friny 1.000 0957  1.000  0.964
mean fmin.m 0.44 0.08 0.23 0.16
mean ppm at fninm 0959 0998  0.893  0.953

GCP 1 and GCP 3 exhibit the highest and GCP 2 the lowest flex-
ibility. This indicates that information on the flexibility of different
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Figure 6: Comparison of f; and f;, show similar tendencies
regarding the minimum exhibited flexibility and the flexi-
bility distribution for all GCPs

GCPs could be extracted even of less than a year of data. Future
research should further examine this relation and take an in-depth
look at monthly billing systems and conduct a more detailed analy-
sis of single months.

On a yearly basis, one single peak data point may exhibit a
significantly lower flexibility than all other relevant peaks. In the
presented data, this was the case for GCP 1 and GCP 3 (see Fig-
ure 6). In those cases, allowing underfulfillment for a single peak
could significantly increase the flexibility. The CI could be planned
according to the next higher flexibility by only under fulfilling a
single 6 h time frame. The presented approach explicitly does not
have the aim to describe operating strategies or control algorithms
and should only support the planning of new CI. However, includ-
ing analysis of the sensitivity towards underfulfillment could lead
to further understanding and better planning in future works.

As shown in Table 4 and Figure 7, to achieve the flexibility dis-
played in Table 3 at some time steps, the charging power needs to
be higher than the mean value to compensate the missing energy
of reduced charging periods around the peaks. At all four GCPs the
maximum charging power is reached at the most inflexible peak.
In average, more than the double (2.2 times) of the mean charging
power is needed to achieve the before mentioned flexibility. While
in average a power of 11.83 % of the peak consumption in CI can be
installed, some GCPs (GCP1 and GCP 3) allow significantly higher
charging power than the others.

Table 4: Charging power mean and max values

values as % of pgy GCP1 GCP2 GCP3 GCP4
worst case max pc 95.6% 404% 60.5% 80.2%
optimal max p, 373% 85% 33.3% 28.8%
mean pc 13.8% 6.6% 144% 125%
CI oversizing reg. mean 2.7 13 23 23
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Figure 7 shows the required charging power in relation to the
available flexibility. The displayed *worst case’ means the maximum
charging power in ¢5 is used, meaning charging at a total power
consumption of pgy, for any time, charging is active and only stop-
ping, if the energy requirement is met or the power needs to be
reduced due to a peak. In the ’optimal case’, the charging power is
at most the highest charging power from the most inflexible peak.

1.0
0.8
0.6/ % .. .

g .
0.4 | ¢
02| <

fy

080 02 04 06

Figure 7: The most inflexible peak determines the maximum
charging power, as shown here for GCP 4 (for all GCPs see
Appendix C). In the unoptimized case (red o), higher charging
powers occur at all peaks exhibiting greater flexibility. The
excess flexibility can be used to reduce the charging power
(blue x) down to the mean charging power (black line).

The charging power can in average be chosen more than 60 %
lower when exploiting the surplus flexibility than in the unopti-
mized case. Still, the installed charging power needs to be about 2.2
times higher than the average charging power to take advantage of
the flexibility potential. The mean proposed charging power lies at
11.83 % of the peak power for the sum of the GCPs (see Table 4). The
oversizing of power is characteristic of all plants with flexibility.
Otherwise, flexibility provision would not be possible at all. A big
advantage of CI is that oversizing is possible at low cost, since in
the case discussed it is not necessary to reinforce the supply line to
the GCP or the transformer, since new peaks are prevented. Only
the plug, and therefore the charging point and the car, have to be
able to handle correspondingly higher power.

Since the charging power can be reduced significantly below
the charging power from the most inflexible peak, not even all
flexibility is used for charging power optimization. This still leaves
a margin for safety or other purposes.

4.3 Correlation of flexibility and peak power

Among other things, it was noted in subsection 4.2 that the peak
with the highest power peak is not necessarily identical with the
most inflexible peak (for example see Figure 8. This finding is ex-
amined in more detail in the following.

As shown in Table 5 and Figure 9, peak power and f are strongly
negatively correlated. This correlation is statistically significant
(p-value lower than 5 %) for the unfiltered values on a yearly and
monthly basis and the filtered values on a monthly basis, see Table 5).
However, this is not true for the yearly basis due to some short
but high peaks. Because of their shortness, those high peaks also
exhibit a high flexibility indicator. And because of the reduced
number of relevant data points for the yearly basis, those outliers
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Figure 8: For GCP 4 the peak with the highest power is not
the one with the lowest flexibility (all GCPs, see Appendix C)

have a relevant impact. Therefore, a key finding is, that the highest
peak cannot be assumed to also be the most inflexible one.

Table 5: On a monthly basis, the peak height and flexibility
show a statistically significant negative correlation for all
GCPs. On a yearly basis, GCP 1 and GCP 2 show no statis-
tically significant correlation, GCP 3 shows a statistically
significant negative and GCP 4 a statistically significant pos-
itive correlation

GCP1 GCP2 GCP3 GCP4
PCC  -1.00 015  -092  0.64

fy (filtered) e 1 0.59  0.00038 0.0026
PCC  -055  -0.82  -055  -0.82

fm (filtered) e 35e-10 6.6e-32 3.5e-19  1.6e-32

(a) GCP 3: Significant negativ (b) GCP 4: Significant positive

correlation correlation
1.0 1.0 X)/XX
0.8 0.8 :
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Figure 9: Two examples of the correlation of p, and f; of
filtered values (red x) that can be significantly different for
different GCPs (for a complete overview, see Appendix B)

Table 3 shows the peaks with the lowest flexibility. On a yearly
basis, those occur at peaks with a proportion of 95.7 % to 100 % of the
yearly peak value. In six out of eight of the combinations of GCPs
and billing methods, the lowest flexibility does not correlate with
the highest peak. On a yearly basis, the lowest flexibility occurs in
average at a peak with around 98 % of the yearly peak power. This
imposes the need to include suitable characterization methods for
flexibility for all use cases or data-analysis methods. For example, a
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control algorithm for operating a charging infrastructure should
not only be based on a peak forecast but also, at least implicitly,
include a flexibility forecast. Meaning, the most critical day for an
optimization may not be those with the highest predicted peak
but those with a slightly lower but for longer time constantly high
baseline profile.

4.4 Single GCP versus district

As mentioned in section 1, the advantages of combining multiple
GCPs to a district need to be critically examined. For this purpose,
the flexibility indicator was calculated for three different scenarios
(A, B and C). The parameters of interest are the total peak power
and the flexibility indicator values.

4.4.1 Scenario A. In the state-of-the-art scenario, billing is carried
out for each GCP separately. Therefore, the least flexible peak of
each individual GCP is of interest. The relevant baseline load profile
in scenario A is the sum of the individual load profiles around these
most inflexible peaks. The peak height is defined by the sum of the
peak height of allGCPs around these peaks.

4.4.2 Scenario B. In the district scenario, all GCP’s baseline load
profiles are summed up before applying the analysis workflow.
The whole district is thus considered as one large single consumer.
Therefore, the flexibility of the district is calculated on the newly
formed maxima of the newly calculated load profile. This would
require the law to allow billing on a district level. The advantage
of district billing in contrast to GCP based billing is the reduction
in required peak power. In the real-world data at hand, the district
peak is 23.48 % lower than the peak in scenario A (additional plot,
see Figure 14). The flexibility in scenario B (0.089), however, is
also reduced by almost 25 % compared to scenario A (0.152). The
reduction in peak power also led to a reduction in flexibility. Further
evaluation is needed to examine, how much the power can be
reduced through a district while still keeping the same flexibility
as scenario A. It should be examined what the relationship of peak
reduction and flexibility provision on a district level looks like.

4.4.3 Scenario C. To bring the reduced peak power and the
reduced flexibility in perspective, as a third scenario C, the district
is also evaluated with the maximum power of the sum of the GCPs.
In the scenario C, the flexibility (0,245) increases by almost 107 %
compared to scenario A (0.152). This means, if the same power
maxima than in scenario A is assumed, the district outperforms
the state-of-the-art. However, if the full peak power reduction
potential of 23.48 % should be utilized, the flexibility is also reduced.
There appears to be a tradeoff of peak reduction versus flexibility.

Further, since flexibility is always defined relative to the peak,
for a fair comparison, also the different absolute peak height should
be considered. Therefore, also the comparison of the mean charg-
ing power regarding scenario A is included in Figure 10. In the
district scenario B, the mean charging power is reduced by more
than 40 %. In scenario C the mean charging power is 3.61 times
higher than in scenario A. Moreover, the mean available charging
power is reduced alongside the peak power. This likewise shows
the presumed tradeoff of peak reduction versus flexibility. Data for
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additional districts is needed to further examine the relationship of
peak reduction and flexibility provision on a district level.

14
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040 | ’ 135
n pcharge, mean
(scaled on sum GCPs) B3
0.30 r ] 25
552
0.20 r
1 1.5
0.10 } i
0.00 *- 0

sum GCPs district district (sum max)

Figure 10: Comparison of characteristic flexibility f; and
mean charging power pcpayge,mean scaled to the current states
of separate GCPs

5 CONCLUSION AND OUTLOOK

The present paper shows that flexibility is not a natural inherent and
fixed value of an energy system, but rather describes the suitability
of an energy system in performing optimal under specific use cases
or boundary conditions.

We present a new flexibility indicator that considers characteris-
tics of charging infrastructure, like limited availability of vehicles
and limited charging power, which supports the planning phase of
new charging infrastructure. Furthermore, we present the whole
data-analysis workflow on how to apply the flexibility indicator.
We apply the workflow on a data base from a real-world district
and examine the monthly and yearly flexibility and compared the
different grid connection points of the district.

The data-analysis in the present paper confirms that peak charac-
teristics are highly influencing the suitability for valley filling. We
further demonstrate that it is incorrect to assume that the highest
peak during a particular time period is also the most inflexible one.
The monthly and yearly flexibility show the same characteristics
for the given data base. Furthermore, we show that a surplus in
flexibility can be utilized to reduce and optimize the maximum
required charging power.

Future work should examine the feasibility of extrapolating flex-
ibility on less than one year of data and validate the results on more
than one year of data as well as further real-world datasets. Fur-
thermore, different approaches on dealing with lower measurement
resolution could be looked into. Moreover, the identified tradeoff
of flexibility versus peak reduction on the district level needs to be
further investigated, as well as the potential of flexibility increase
when allowing underfulfillment of charging demand in a limited
time frame. Finally, since we pointed out that the most inflexible
peak is not always the one with the highest peak power, this im-
poses the need to at least implicitly include flexibility in future
works on forecasts and optimizations, and it is not sufficient to only
use the highest peak power values as key indicators.
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A REAL-WORLD BASELINE LOAD PROFILES
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B CORRELATION OF FLEXIBILITY (f) AND PEAK POWER (p)
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Figure 12: Correlation of flexibility (f) and peak power (p) of all GCPs on a yearly and a monthly basis black lines marking
linear regression of correlation of filtered values, x marking relevant and o marking irrelevant peaks
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C MOST INFLEXIBLE PEAKS AND CHARGING POWER
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Figure 13: For GCP1 and GCP3 the highest year peak corresponds with the most inflexible peak. Regarding GCP2 and GCP4,
the year peak is significantly more flexible, than other peaks
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Figure 14: Sum of the most inflexible peaks of all GCPs (sce. A) versus the most inflexible peak of the district profile (sce. B)
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Figure 15: The most inflexible peak determines the maximum charging power. In the unoptimized case (red o), higher charging
powers occur at all peaks exhibiting greater flexibility. The excess flexibility can be used to reduce the charging power (blue x)
down to the mean charging power (black line).
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